

User Guide

Voronoi Health Analytics Inc. 🚺

This is an interactive user guide. Click on the blue boxes to learn more about each part of DAFS or click on a menu item on the right.

You can return here anytime to check out other features by clicking the $\widehat{\mathbf{m}}$ icon.

C DAFS 3		- 🗆 X
Data Analysis Facilitation Suite Version 3.8.1		User Guide
1 Preprocess Begin your analysis by standardizing your data. This will create a new Working Folder by curating DICOMs. (Page 4) Disable strict scan integrity checking (not recommended) Browse for input Folder Recently opened	2 Label and Export Select a Working Folder to label and/or export results (Page 5) Browse for Working Folder Recently opened	Anonymize Deindentfy DICOM attributes (Page 7) K Anonymize Deindentfy DICOM attributes (Page 7) L Deindentfy DICOM attributes (Page 7) Anonymize Deindentfy DICOM attributes (Page 7) Deindentfy DICOM attributes (Page 7) Deindentfy DICOM attributes (Page 7) Anonymize Deindentfy DICOM attributes (Page 7) Anonymize Deindentfy DICOM attributes (Page 7) Deindentfy DICO
Browse for Output Folder Recently opened	Auto-Label Label Enable automated segmentation and landmarking. (Page 12) Reset labels Redo all segmentations and landmarks; overwrites all existing labels. Check Labels Quickchecks Generate snap shot images in PNG format for fast quality assessment. (Page 8) Slices	Print DICOM Attributes Reset to default
Start Preprocessing	% Opacity [100 ▼] Set segmentation opacity. Tissues Identifier Print ID on quickchecks.	Export PDF Results ✓ Print PDF Report Generate PDF reports. (Page 14) ✓ O CPU only O GPU when applicable ✓ Start Processing

Use these buttons to open helpful menus!

Overview

Preprocessing

Preprocess

Preprocessing will detect all DICOMs within an Input Folder and use the embedded DICOM metadata information to *sort* and *copy* each unique scan into its own folder. It is integral to perform Preprocessing before proceeding with any other processing.

Input Folder – Select any top-level folder containing DICOMs.

- All DICOMs, including those in subfolders within the designated Input Folder will be preprocessed.
- Ensure that no DAFS System Folders (what's this?) are in the Input Folder path.

Output Folder – Select any folder. DAFS will create a new folder known as the Working Folder (what's this?) within the Output Folder (date & time stamped) and the curated scans will be inside, copied from the Input Folder.

- DAFS will create a Working Folder inside the Output Folder.
- Ensure that no DAFS System Folders are in the Output Folder path.

Disable strict scan integrity checking – DAFS has strict checking for the integrity of the 3D scan reconstructed from the DICOMs. Enable this to override strict checking for slice orthogonality, heterogeneous acquisition numbers and heterogeneous slice orientations.

Preprocessing may take some time depending on the size of the Input folder. For an Input folder containing ~10000 files, curation will take ~12.5 minutes.

Where can I find out which scans did not get preprocessed?

Learn more

next

Preprocess: Configuring CT/PT Mapping Rules

CT and PET mapping rules can be configured in:

%LOCALAPPDATA%\Voronoi Health Analytics\DAFS\dafs config.json

Example:

"version": "0.0.2", "match_attrs": ["PatientID", "StudyInstanceUID"], "match regex": {"SeriesDescription": ".*[^N]AC.*"} }

"match attrs": Mapping based on matching attributes: Specify a list of attributes that must be exactly matching between the CT and PET.

"match regex": Regex matching: Specify a list of attributes which values must match specific regular expressions. We recommend using this in conjunction with "match attrs", not on its own.

After Preprocessing is run and there are both valid CT scans and PT scans in your dataset, a CT to PT mapping csv will be made in the Working Folder with matching CT-PT pairs according to the mapping rules. This csv can be manually edited if required.

Processing and Exporting

Working Folder

A Working Folder is generated within the Output Folder following Preprocessing and is the location in which DAFS and CAST will both read and write. A Working Folder will be generated with a date & time stamp. DAFS will update the Working Folder each time Start Processing is clicked.

Working Folder – Select a folder generated by Preprocessing. This folder will likely have a date and time stamp if the name has not been modified.

- Generated after preprocessing is complete.
 - DAFS and CAST will read and write to this folder.

What's inside a Working Folder?

Learn more

Click to see a full map of a Working Folder.

Curated Scans

These are folders, each containing a unique scan that has been curated via Preprocessing.

DAFS-report date time folders

These are folders that store processing information and reports from each DAFS run. A DAFSreport folder that is date and time stamped will be generated each time DAFS is run on the same Working Folder, acting as a historical record of DAFS processes. Each DAFS-report may include one or more of the following subfolders depending on the options chosen.

logs

Contains logs on errors that may have occurred during processing. The contents in this folder may help with troubleshooting if the DAFS output was not as expected. Generated every run - It is highly recommended to check this folder after processing.

CSVS

Contains results from Preprocessing, Anonymization and Publish in csv format.

quickchecks

Contains visual media to aid with quality assessment in PNG format.

reports

Contains results from enabling PDF reports

previous page next

Representation of a folder structure after three DAFS runs following a suggested workflow.

Auto-Label

Enable automated segmentation and landmarking.

Reset Labels

Enabling this checkbox will prompt DAFS to replace existing segments. If manual corrections have been done in CAST, it is likely that you should NOT use this feature. Segmentations that are replaced cannot be recovered. **Please use with caution**.

Quickchecks

Generate visual media for efficient quality checking of segmentations in the Working Folder. Run before, during and/or after segmentation quality control to update quickchecks with the most recent changes. Find results in the quickchecks folder.

Entries

Slices Head;C1;C2;C3;C4;C5;C6;C7;T1;T2;T3;T4;T5;T6;T7;T8;T9;T10;T11;T12;L1;L2;L3;L4;L5;L6;LSTV;Sac rum;Femur;Knee;Tibia;Feet

Make Quickchecks with slice levels selected in the text area. Defining Slices will create sagittal and coronal .pngs that display the annotated slices in the image. Axial images will also be sampled from selected Slice levels. If Slices are selected in conjunction with Tissues, Slices will take priority in axial quickcheck sampling. Leave empty for equal sampling throughout the scan.

Tissues <u>Tissue Dictionary</u>

Make Quickchecks with Tissues selected in the text area. Using tissues will create sagittal and coronal .pngs that are sampled within the ROI of the tissue. Axial images will also be sampled within the ROI of the tissue **if no Slices are selected**. If Slices are selected in conjunction with Tissues, Slices will take priority in axial quickcheck sampling.

Opacity Control

Control the level of opacity level of segmentation displayed on quickchecks.

Identifier

Enable printing of an image identifier on the quickcheck.

- Options include None, PatientID, PatientName, SeriesNumber, StudyID, AccessionNumber and MRN.
- If the selected identifier does not exist for a scan, no identifier will be printed on the quickcheck.

PNG files naming convention

- annotation-coronal/annotation-sagittal images displaying annotated slices.
- tissues_and_annotations-axial images displaying tissues and annotated slices, with annotated slices taking priority in sampling if selected.
- tissues-coronal/tissues-sagittal images displaying tissues.

Anonymize

Find the anonymization report in the csvs folder.

<u>Attribute</u>

Method of anonymization

InstanceCreatorUID	remove
InstitutionAddress	remove
ReferringPhysicianAddress	remove
ReferringPhysicianTelephoneNumbers	remove
StationName	remove
StudyDescription	remove
SeriesDescription	remove
InstitutionalDepartmentName	remove
PhysiciansOfRecord	remove
NameOfPhysiciansReadingStudy	remove
OperatorsName	remove
AdmittingDiagnosesDescription	remove
Derivation Description	remove
PatientBirthTime	remove
OtherPatientIDs	remove
OtherPatientNames	remove
PatientAge	remove
PatientSize	remove
PatientWeight	remove
PatientAddress	remove
MedicalRecordLocator	remove
EthnicGroup	remove
Occupation	remove
Additional Patient History	remove
PatientComments	remove
ProtocolName	remove
ImageComments	remove
RequestAttributesSequence	remove
ContentSequence	remove
StorageMediaFileSetUID	remove

<u>Attribute</u>	Method of anonymizatio	n
SOPInstanceUID	change	
AccessionNumber	change	
InstitutionName	change	
ReferringPhysicianName	e change	
PerformingPhysicianNar	me change	
ReferencedSOPInstance	eUID change	
PatientName	change	
PatientID	change	
PatientBirthDate	change	
PatientSex	change	
StudyInstanceUID	change	
StudyID	change	
FrameOfReferenceUID	change	
SynchronizationFrameO	OfReferenceU	
ID	change	
UID	change	
ReferencedFrameOfRef	erenceUID change	
RelatedFrameOfReferer	nceUID c <u>h</u> ange	
Non-anonymizable attr	ibutes (3D scan integrity)	

SeriesInstanceUID	PixelSpacing
AcquisitionNumber	SliceLocation
SeriesNumber	SliceThickness
AnatomicalOrientationType	RescaleIntercept
ImageOrientationPatient	RescaleSlope
ImagePositionPatient	PhotometricInterpretation
PixelData	BitsAllocated
Rows	BitsStored
Columns	HighBit

Publish

Compile information derived from DICOMs, segmentations and landmarks into csv files. Multiple entries in textboxes are possible by delimiting each entry with a semicolon. See the <u>Publish CSV Dictionary</u> for column definitions. **Cross sectional areas for volumetric slabs are averaged across all slices within the slab*.

Region-Of-Interest (ROI) Constructor

Derive from Slices and Slab(s)

Use anatomical locations to derive tissue measurements by defining vertebral level Slice Annotations (inputs are case insensitive).

Examples:

- FULL_SCAN use measurements from the entire scan.
- L3mid use measurements from L3mid slice only (cross-sectional area only).
- T1start-to-L5end use measurements from the top of T1 vertebrae to bottom of L5 vertebrae.
- avg-T12mid[3] use measurements at T12mid averaged across 3 slices above and below.
- L1start-to-L1end use measurements from the top of L1 to bottom of L1 vertebrae.
- L1 equivalent to L1start-to-L1end.
- ScanStart defined as the top of the scan; the first slice. ScanEnd is defined as the bottom of the scan; the last slice.

Derive from Tissues and Parts of Tissues

Tissue Dictionary

Select tissues and HU ranges to derive measurements from.

Examples:

- ALLSKM derive measurements from total skeletal muscle within the scan.
- ALLSKM[-29,150] derive measurements from total skeletal muscle within the range of -29 to 150 HU only found within the scan.
- VAT[-150,-50]-U-SAT[-190,-30] derive measurements from VAT within -150 to -50 HU and SAT within -190 to -30 HU combined (unionized) as one segment. Multiple ROIs can be unionized separated by -U-.
- LIV derive measurements from liver segmentation.
- SPL derive measurements from spleen segmentation.
- LKID derive measurements from the left kidney segmentation.

Print DICOM Attributes – Choose DICOM header information to include in the CSV

Define a set of DICOM attributes to be printed as columns in the csv. This is useful if you wish to sort scans by certain DICOM attributes when viewing the csv report. Anonymized attributes will print as NA.

How do I view EUR format in MS Excel?

Learn more

My data has leading zeroes and is not being displayed correctly in Excel.

previous page

next

Tissue Dictionary p1

Muscle Group

Colour	Entry	Anatomical ROI
	ALLSKM	Total skeletal muscle within the scan
	ALLSKM_NOARMS	Total skeletal muscle excluding arms
	LPECMJR	Left pectoralis major
	RPECMJR	Right pectoralis major
	LPECMNR	Left pectoralis minor
	RPECMNR	Right-pectoralis-minor
	LTEMPORALIS	Left temporalis
	RTEMPORALIS	Right temporalis
	LMASSETER	Left masseter
	RMASSETER	Right masseter
	LILIOPSOAS	Left iliopsoas
	RILIOPSOAS	Right iliopsoas
	LUPLGSKM	Left upper leg skeletal muscle
	RUPLGSKM	Right upper leg skeletal muscle
	LLWLGSKM	Left lower leg skeletal muscle
	RLWLGSKM	Right lower leg skeletal muscle
	LASKM	Left arm skeletal muscle
	RASKM	Right arm skeletal muscle

Ventral Adipose Tissue Group

IMAT (Intra-muscular Adipose Tissue) Group

Colour	Entry	Anatomical ROI	Colour	Entry	Anatomical ROI
	VAT	Visceral adipose tissue		ALLIMAT	Intramuscular adipose tissue
	ЕрАТ	Epicardial adipose tissue		ALLIMAT_N OARMS	Total scan IMAT excluding the arms
	PaAT	Paracardial adipose tissue		LUPLGIMAT	Left upper leg IMAT
	ThAT	Thoracic adipose tissue		RUPLGIMAT	Right upper leg IMAT
			LLWLGIMAT	Left lower leg IMAT	
SAI (Su	ocutaneous	Adipose Tissue) Group		RLWLGIMAT	Right lower leg IMAT
Colour	Entry	Anatomical ROI		LAIMAT	Left arm IMAT
	SAT	Subcutaneous adipose tissue		RAIMAT	Right arm IMAT
	LASAT	Left arm SAT			
	RASAT	Right arm SAT	Mor	e tissues	on the next page

previous page next

Tissue Dictionary p2

Fluid Buil	dup		Cardiovas	scular	
Colour	Entry	Anatomical ROI	Colour	Entry	Anatomical ROI
	ASCITES	Ascites; abdominal fluid		AOC-U-CAAC	enables AOC-CAAC-based
	LUNGEFEUSION Lung effusion: pleural			agatston score	
		effusion		AOC	enables AOC-based agatston
					score
				CAAC	enables CAAC-based agatston score

Organs					
Colour	Entry	Anatomical ROI	Colour	Entry	Anatomical ROI
	LIV	Liver		AO	Aorta
	SPL	Spleen		AOC	Aortic calcification
	LKID	Left kidney		CAAC	Cardiac aggregate calcium
	RKID	Right kidney		LLUNG	Left lung
	GB	Gallbladder		RLUNG	Right lung
	HRT	Heart		TRACH	Trachea
	PANC	Pancreas		BLADDER	Bladder
	BRAIN	Brain		PROSTATE	Prostate

Bone Group

Colour	Entry	Anatomical ROI
	ALLBONE	Total bone within the scan
	ALLBONE_NOARMS	Total bone within the scan excluding the arms
	LFMRHEAD	Left femoral head
	RFMRHEAD	Right femoral head
	LFMRNECK	Left femoral neck
	RFMRNECK	Right femoral neck
	LFMRSHAFT	Left femoral shaft
	RFMRSHAFT	Right femoral shaft
	LHPBONE	Left hip bone
	RHPBONE	Right hip bone
	TRBCLR	Trabecular bone
	LABONE	Left arm bone
	RABONE	Right arm bone

Reports

Body Composition Reports

Ensure that you have your annotations ready for your scans before running PDF report generation.

Outputs will be sent to a DAFS Report folder in your working folder under the folder name "reports".

Specify one or more landmarks with each entry separated by a semicolon. The entries are case insensitive.

Examples:

- L3mid (the middle slice of L3).
- avg-L3mid[5] (average cross sectional area 5 slices above and below L3 middle annotation).
- T4start (the top slice marked as T4).
- L5end (the bottom slice marked as L5).
- T12mid;L3mid;avg-L5mid[2] (print reports for T12mid, L3mid and L5mid averaged across 2 slices above and below).
- FULL_SCAN use measurements from the entire scan.
- T1start-to-L5end use measurements from the top of T1 vertebrae to bottom of L5 vertebrae.
- L1start-to-L1end use measurements from the top of L1 to bottom of L1 vertebrae.
- L1 equivalent to L1start-to-L1end.
- L4start-to-scanend use measurements from the top of L4 to bottom of scan. "scanend" is used to define the lowest slice of the scan.
- L4start-to-scanstart use measurements from the top of L4 to top of scan. "scanstart" is used to define the highest slice of the scan.

Organ Reports

Outputs will be sent to a DAFS Report folder in your working folder under the folder name "reports".

Specify one or more organs with each entry separated by a semicolon. The entries are case insensitive.

Possible entries:

LIV;SPL;LKID;RKID;HRT;CAAC;GB;AO;AOC;LLUNG;RLUNG;TRACH;PANC;BRAIN;BLADDER;PROSTATE

Filtering the Segment list

Type in tissue names separated by semi-colon or hyphen and press Enter to display them in the Segment list, thereby, narrowing the focus of segmentation QC to only segments you wish to see and edit. Examples:

- ALL will display all available segments for the scan.
- SKM;VAT will display SKM and VAT segments only.
- SKM-VAT will display all segments between SKM and VAT.

For Unfiltered segments:

Ð	۲
Ð	Ø
ð	٢

- Segments not in the Segment list cannot be overwritten or seen.
- Segments not in the Segment list can be overwritten but not seen.

Segments not in the Segment list can be overwritten and seen.

Keyboard and mouse shortcuts (* requires mouse cursor to be on Viewport)

CAST: Annotator

Annotator is a unique tool that enables editing of annotations generated by AVA or creation of manual annotations without AI assistance. While there is a small learning curve, the next three pages will help you get familiar with Annotator and its functions.

Deletes the slab that corresponds with the current axial slice shown in the viewport

Annotator enables assignment and editing of vertebral annotations to DICOM slices. The tool works by adjusting landmark "slab" heights. Slab heights can range from 1 slice to N number of slices in the image. The -start and -end indicate the top and bottom boundaries of the slab and every slice between the two boundaries are annotated as the same landmark. There is also a -mid suffix which indicates the slice annotated as a middle slice of that landmark; this annotation is displayed in white in the ViewPort.

To begin, first try placing your mouse cursor on the sagittal viewport. Hold SHIFT + move your mouse up and down. Notice that the axial view intersection line is following your cursor and that the axial view is changing rapidly.

Next, place the axial view intersection line a few slices above a –start boundary. Then, click the button of the landmark you are working on. Notice that the –start boundary has moved and the height of the slab is increased. Similarly, placing the intersection line below the boundary will decrease the height and contract the slab. Try this with the –end boundary, but this time placing above the boundary will contract slab, and below will expand the slab.

Annotator will always edit the boundary that is closest to the Axial view intersection line.

To assign middle slices, both boundaries for a given landmark must be present. You cannot assign a middle slice on a slab with thickness = 1 (only 1 DICOM is annotated). To reassign a different DICOM as the middle slice, simply place axial slice intersection line within a landmark's slab boundary and click "Mark as middle slice".

You may also mark –start and –end slices as middle slices. Notice that the boundary marked as middle will appear slightly brighter.

You may choose to unmark a middle slice for a given vertebra. Locating the axial view intersection line within the landmark's slab will enable you to reassign slices to the middle slice or remove the middle slice annotation for that vertebrae.

Appendix

Preprocessing Error Logs in Detail

Preprocessing failures will occur if the following errors are detected. You can find a curation failures log in the DAFS-report and logs folder. See <u>page 6</u> to learn more about where to find reports and logs.

heterogeneous_series_numbers - Corrupted or empty DICOM header.

heterogeneous_acquisition_numbers – Corrupted or empty DICOM header.

heterogeneous_series_uids - Corrupted or empty DICOM header.

invalid_anatomy_type - Corrupted or empty DICOM header.

invalid_image_orientation_patient – Corrupted or empty DICOM header.

invalid_image_position_patient – Corrupted or empty DICOM header.

heterogeneous_slice_orientations – Corrupted or empty DICOM header.

duplicate_slice – Corrupted scan containing 2 or more of the same DICOM file.

no_valid_dicom_slices - Only .asg files are present in the Input folder.

non_anonymized – PHI fields detected.

non_axial_orthogonal_orientation – There are non-axial slices present.

missing_slices – There are DICOMs missing and disrupting 3D scan integrity.

3D_scan_loading_failure – Issue with 3D scan.

Go back to Preprocessing

Generating EUR csv format Windows Control Panel -> Clock and Region -> Region

👂 Region		\times	🔗 Customize Format	U U V
Formats Administrative			Numbers Currency Time Date	
Format:			Example	
Polish (Poland)	← <u>1</u> . ~		Positive: 123 456 789,00	Negative: -123 456 789,00
Language preferences				
Date and time forma	its		Decimal symbol:	. 4 3. ~
Short date:	dd.MM.yyyy ~		No. of digits after decimal:	2 ~
Long date:	dddd, d MMMM yyyy \sim		Digit grouping symbol:	~
Short time:	HH:mm ~		Digit grouping:	123 456 789 🗸
Long time:	HH:mm:ss ~		Negative sign symbol:	- ~
First day of week:	poniedziałek \vee		Negative number format:	-1,1 ~
			Display leading zeros:	0,7 ~
Examples Short date:	21.08.2020		List separator:	; 🔶 4-
Long date:	piątek, 21 sierpnia 2020		Measurement system:	Metric ~
Short time:	11:59		Standard digits:	0123456789 ~
Long time:	11:59:30		Use native digits:	Never ~
	Additional settings	— 2	Click Reset to restore the system defau numbers, currency, time, and date.	ult settings for Reset
	OK Cancel Ap	ply	[OK Cancel Apply

- 1. Check the Format option to confirm a European country.
- 2. Click on Additional settings...
- 3. Check to make sure Decimal symbol is a comma.
- 4. Check to make sure List separator is a semicolon.

Open Excel, and click Open -> Browse -> select All files (*.*) and navigate to the Output folder 'csvs' subfolder to find the *Publish.txt* and open.

A Text import Wizard will appear.

Text Import Wizard - Step 1 of 3 ? X	Text Import Wizard - Step 2 of 3 ?	Text Import Wizard - Step 3 of 3 ? X
The Test Wizard has determined that your data is Delimited. this is correct, choose Net, or choose the data type that best describes your data. Orginal data type Choose the file type that best describes your data: © Delimited - Characters such as commas or tabs separate each field. Fixed width - Fields are aligned in columns with spaces between each field. Start import at row: 1 Pile grigin: 437: OEM United States V	This screen lets you set the delimiters your data contains. You can see how your test is affected in the preview below. Delimiters Seglicolon Seglicolon Seglicolon Seglicolon Quertication Test gualifier: Yething Space	This screen let you select each column and set the Data Format. Column data format © General Converts numeric values to numbers, date values to dates, and all remaining values to text. Do not import column (skip)
_ by data has headers. Preview of file C.Wsers/Wincert/Desktop/daWmaging_derived_metrics-and-dimical-measures.ht. [focollared_did", "pisel_videb", "pisel_beight", "Missele_pisel_count", "Missele_pisel_ 2 foaccopenia_COS_124.1 - Copy.170, 7927, "0, 7927, "256337, "156, 073270537, "39, 99134 [foaccopenia_COS_124.1 - Copy.170, 7927, "0, 7927, "25637, "156, 073270537, "157 4 foaccopenia_COC_125.1-1", "0, 7917, "0, 7921,", "10970", "127, 9080217", "25, 915764 ↓ Cancel < Back Metry Finsh	Data greview collated_id pixel_width pixel_height hucle.pixel_count fixel_height Baccopenia_GOS_114.1-C p.703 p.703 b553 fixel_height Baccopenia_GOS_114.1-C p.703 p.703 b553 fixel_height Baccopenia_GOS_114.1-C p.703 p.703 b553 fixel_height Baccopenia_GOS_114.1-C p.701 p.701 p.701 b0570 fixel_height Cancel < Back	Data greview 2010 r.1. 201

1. Choose file type that best describes your data. It should say Delimited by default. Click Next.

2. Select Comma as the only Delimiter. Click Next.

3. Click <u>F</u>inish.

Suggested Workflow

Go back to Working Folder

Folders Dictionary

Input Folder – Select any top-level folder containing DICOMs. All DICOMs, including those in subfolders within the designated Input Folder will be processed. Applies to Preprocessing only.

Output Folder – Select any folder. DAFS will create a Working Folder within the Output Folder. Applies to Preprocessing only.

Working Folder – Select any curated folder generated by Preprocessing. This folder will likely have a date and time stamp if the name has not been modified and must only have subfolders inside. All processing by DAFS and edits made in CAST will be saved within the Working Folder. DAFS will automatically designate the Working Folder after Preprocessing is complete.

DAFS System Folders – Folder names that cannot be anywhere in the path of the Input Folder, Output Folder or Working Folder. DAFS will not continue processing if the following keywords are detected in any of these paths (case insensitive). Furthermore, any of these key words followed by an underscore (_) cannot be anywhere in the paths.

- DAFS-report
- logs
- quickchecks
- reports
- CSVS
- tmp
- Anonymize
- Tissue Statistics_slicewise
- Tissue Statistics
- Preprocessing
- ABACS 3D
- AVA

Go back to Preprocessing

Go back to Working Folder

Supported GPUs

GPU utilization can be enabled for automated segmentation and annotation processing. Using GPUs may decrease processing time by 10 times or more when compared to CPU.

Recommended GPU: Nvidia GeForce RTX 2070 or higher.

List of supported Nvidia GPU microarchitectures and tested graphics card models:

- Ada Lovelace
 - Nvidia GeForce 4000 series
- Ampere
 - Nvidia GeForce RTX 3060
 - Nvidia GeForce RTX 3060 Ti
 - Nvidia GeForce RTX 3070
 - Nvidia GeForce RTX 3090
 - Nvidia RTX A5000
- Turing
 - Nvidia GeForce RTX 2060
 - Nvidia GeForce RTX 2070
 - Nvidia GeForce RTX 2070 Super
- Volta
- Pascal
 - Nvidia GeForce MX150
 - Nvidia GeForce MX250
 - Nvidia GeForce MX330
 - Nvidia GeForce GTX 1070
 - Nvidia GeForce GTX 1050 Ti

Note: DAFS 3 may also be compatible with other graphics card models not listed above with the supported microarchitectures.

If you think you may have a compatible GPU, but DAFS is not detecting it, please contact us at support@voronoihealthanalytics.com.

Publish CSV Dictionary

Category General format General scan attributes: scan_folder, orig_path, voxel_size_WxLxH

Slab attributes: \$slab;num_slices, \$slab;img_size_WxLxH, \$slab;height_mm

Slab and Tissue (ROI) attributes: \$slab;\$tissue;\$tissue_statistic

• **\$tissue_statistic =** cross.sectional_area_pixels, cross_sectional_area_cm2, volume_voxels, volume_cm3, HU_mean, HU_std, HU_min, HU_max

** "\$" represents a variable.**

Term	Meaning
defined_slab	(applicable to by_slab csv only) Describes the slab in which the measurements belong.
scan_folder	A unique ID assigned to a scan after curation which also is the folder name of that scan.
orig_path	The original path of the scan or DICOM files.
img_size_WxLxH	Image dimensions in width, length and height.
voxel_size_WxLxH	Voxel dimensions in width, length and height.
height_mm	The vertical anatomical height of the defined.slab in mm.
num_slices	The number of DICOM slices in the defined.slab.
cross.sectional_area_pixels	Cross sectional number of pixels - number of voxels within the region-of-interest.
cross_sectional_area_cm2	Cross sectional area in centimeters squared within the region-of-interest.
volume_voxels	Volume number of voxels - number of voxels within the region-of-interest.
volume_cm3	Volume in centimeters cubed within the region-of-interest.
HU_mean	Mean Hounsfield Unit within the region-of-interest.
HU_std	Hounsfield Unit standard deviation within the region-of-interest.
HU_min	Minimum Hounsfield Unit within the region-of-interest.
HU_max	Maximum Hounsfield Unit within the region-of-interest.
pet_uptake_*	Measurements derived from the PET image
tissue[####,####]	The region-of-interest defined by the tissue name and hounsfield unit range.
tissue[####,###]-U-tissue[####,###]	An ROI defined by multiple region-of-interests unionized defined by the tissue names and Hounsfield unit ranges.

Go back to Publish

License and Information

Expiration date – Date of license expiry.

Scans processed – The number of unique scans that have been processed out of the total number of available scans provisioned in the license.

Scans remaining – The number of available scans left in the license.